Maps
Olá galerinha, tudo bem? Você já coloriu um mapa? Então, pegue um mapa qualquer dividido em regiões e uma caixa de lápis de cor. O desafio é o seguinte: para colorir este mapa sem que duas regiões vizinhas tenham a mesma cor, de quantos lápis, você vai precisar? Não sabe? A mais linda de todas as ciências te responde: são quatro lápis de cores diferentes (tipo hã?!).
Apenas quatro. Isso é o que diz o teorema das quatro cores. Um advogado inglês tentava em 1852 colorir o mapa com os distritos da Inglaterra e, refletindo sobre o problema, afirmou que com quatro cores seria possível pintar qualquer mapa sem que regiões vizinhas tivessem a mesma cor. O problema se popularizou e passou pelas mãos de muitos matemáticos sinistros. Mesmo assim demorou mais de 100 anos até que o fato fosse demonstrado. Mas essa polêmica não chegou ao fim: a demonstração obtida exige tantos cálculos que se torna humanamente impossível realizá-la sem auxílio de computadores.
Dá uma olhada nesse mapa (polígono). Repare que utilizamos quatro cores, mas poderíamos usar menos. Tente você, usar menos cores.
E no mapa do Brasil? Quantas cores você acha que consegue colorir? Tente você colorir:
Abaixo, eu mostro um exemplo de como pintei o mapa do Brasil. Tipo: IRADO!
Uma curiosidade:
Este teorema foi demonstrado com a ajuda de um computador IBM360 em 1976 por Appel (matemático americano) e Haken (matemático alemão). A prova mostrava que, se para cerca de 2000 formas “básicas” de mapas era possível colorir as regiões nas condições do teorema, então para qualquer outro mapa também seria.
Sendo a prova atual demasiado longa, as verificações a fazer não podem ser feitas diretamente por um ser humano. Trata-se do primeiro grande resultado, cuja prova exigiu o recurso a meios informáticos.
Valeu, galera! Até a próxima!
Fonte: